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Abstract. Complex adaptive systems (CAS) modeling has become a common tool to study the 

behavioral dynamics of agents in a broad range of disciplines from ecology to economics. 

Many modelers have studied structure’s importance for a system in equilibrium, while others 

study the effects of perturbations on system dynamics. There is a notable absence of work on 

the effects of agent interaction pathways on perturbation dynamics. We present an agent-based 

CAS model of a competitive economic environment. We use this model to study the 

perturbation dynamics of simple structures by introducing a series of disruptive events and 

observing key system metrics. Then, we generate more complex networks by combining the 

simple component structures and analyze the resulting dynamics. We find the local network 

structure of a perturbed node to be a valuable indicator of the system response.  
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1   Introduction 

The increase in computing power seen in the past ten years has made agent-based 

modeling a viable option for studying complex systems. Recent work has begun to 

show the importance of network structure in the operation of complex adaptive 

systems (CAS), including how a system can be influenced using driver nodes [Liu et 

al. 2011]. Other research has focused on how structure can affect a diffusion 

algorithm as it propagates through a system [Ghoshal et al. 2011]. Researchers have 

also explored the implications of community structures in a network [Karrer et al. 

2008]. While there is abundant research on CAS with a variety of structures, there has 

not been a systematic study of whether basic structural features could account for 

qualitative behavioral properties in large networks. This is an important question 

because structure has the potential to influence the robustness of a network. For 
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example, supply networks and power grids losses due to perturbations could 

potentially be decreased by simply altering node connections. The inherent 

complexity of these systems makes analytical development of a perturbation theory 

difficult.  

In this study we begin to explore dynamics within network structures resulting 

from perturbations. We compartmentalize complex networks into simple component 

structures whose dynamics are simply defined. We combine these compartmentalized 

networks and analyze their responses to perturbations. This experimental approach to 

system response provides valuable generalizations about complex networks.  

1.1   Model Formulation 

We study network structure and system dynamics using a configuration of the 

Interacting Specialist Model developed at Sandia National Laboratories [Beyeler et al. 

2011]. In the interest of space, the model formulation is omitted but is rigorously 

defined in Beyeler et al. 2011. This model represents complex adaptive systems using 

coupled nonlinear first-order differential equations to describe the behavior of 

autonomous agents. The agents (or entities) must store, consume, and produce 

resources to maintain viability and competitiveness in their environment. The agents 

maintain their stability through a series of discrete interactions with markets, which 

create exchange pathways between agents. These interactions are facilitated through a 

money resource.  

The model consists of a set of entities arranged in a hierarchy. Entities can be 

grouped into sectors, each of which is a collection of agents that produce and 

consume the same resources. Markets mediate transactions between sectors. A 

collection of sectors and markets makes up a Nation State. 

Entities interact by joining a market and bidding to buy or sell resources. 

Consumers and producers are matched via a double auction. Entities make decisions 

about market transactions based on the entity health, resource reserves, and money 

levels. Health is defined as a scalar function that follows an agent’s consumption with 

respect to a nominal consumption rate. Health abstractly represents a measure of an 

entity’s success in a dynamic and competitive marketplace.  

To study the dynamics of the model, we introduce perturbations and observe the 

system response. We simulate disruptive events by removing a certain percentage of 

an entity’s produced resource in random events that occur with a defined frequency 

and duration. The resource is removed from the entity’s production tank, preventing it 

from being sold to accrue a profit. This method can be used to represent a range of 

perturbation types, from an event analogous to a pipe bursting to smaller but more 

frequent perturbations, such as a 1% loss every time step, which simulates a leak in a 

pipe. This gives us considerable control over the perturbations we introduce into the 

model.   
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2   Structural Dynamics of Simple Networks 

We would like to understand the dynamics of a complex network, such as an 

economy. Unfortunately, the complex feedback patterns created by a network of 

business relationships make it difficult to resolve causation. Thus, to make sense of 

the dynamics, we start by characterizing basic structures. These structures are 

idealized endpoints along axes of topological features commonly used to describe 

networks, such as path length and degree of connection. We use six sectors in each 

structure, and one entity in each sector. A connection from one sector to another 

means that a resource produced in the first sector is consumed in the second. We then 

consider a structure that superimposes several of these component structures and 

observe the resulting dynamics.  

2.1   Fully Connected Networks 

A fully connected network is defined as a network in which every node is connected 

in two directions to every other node in the system. This network is symmetrical and 

robust. Any perturbation will quickly reach every node, but because of the high 

connectivity, the impact is shared among several nodes and the system can cope with 

larger shocks.  

Figure 1 illustrates the fully connected network and the response when node F is 

perturbed by a standard amount, removing 100% of its produced resource stores. By 

analyzing the responses at each node, we can characterize the nodal interactions very 

well.  

 

 

Fig 1. A fully connected network and the perturbation response when node F is shocked 

 

When node F is perturbed there is no product to sell and it immediately stops 

making money. As F lowers its consumption to preserve its money reserves, its health 

level is directly decreased. Because F’s product is no longer available, all other 

sectors also begin to experience health deficits. Nodes A, B, C, D, and E see identical 

health trajectories because they are symmetric and identical.  
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Once F begins to produce again, it has a product that is very scarce with large 

demand. This causes the price to of F’s product to spike, bringing in large profits, 

which spurs consumption leading to a large rise in health. Meanwhile, the other 

sectors are competing for a scarce resource at premium prices, causing them to 

consume less and continue to decrease in health. This behavior continues to a point at 

which F’s product is overabundant, causing a trend reversal as the sectors readjust 

their consumption to changing prices. The health of the sectors then oscillates with a 

certain damping ratio until the system reaches a steady state again.  

There are several notable features about this response. The oscillatory recovery 

response is a nontrivial trait of the fully connected network. Also, the perturbed node 

sees a maximum health deviation that is three times the maximum deviation in any 

other sector. Most importantly, the perturbed node sees a net health gain compared to 

the other sectors, which see a net health loss. This is similar to the competitive 

exclusion principle shown by Beyeler (2011). The perturbed sector is able to exploit 

the scarcity because our model has a fixed demand. In other systems, the market may 

have substitute goods and price would not spike.   

2.2   Hub Networks 

A hub network is asymmetrical, having a central node which consumes resources 

from every other node while also producing a resource that every other node requires. 

Although the vitality of this network depends upon the central node, the periphery 

nodes can also have a significant effect on the structure. Any perturbation quickly 

travels to the central node and then disperses through the rest of the network. It 

represents an extreme case of heterogeneity in connections.  

   

Fig 2. A hub network and a perturbation response for a shock on node F 

      

The response to a standard, 100% removal of a produced resource from a 

peripheral node is remarkably similar to the response of a fully connected network. 

The hub network exhibits three responses corresponding to the perturbed node (F), the 

center node (A) and the periphery nodes (B to E). The maximum health deviation is 

larger than the response observed in the fully connected structure.  
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The behavior becomes more interesting when we perturb the center node in the 

network.  

 

 

Fig 3. A perturbation response for a hub network with the center node shocked 

When a standard perturbation removes 100% of the center node’s produced 

resource, the magnitude at the perturbed node and the recovery time are significantly 

reduced compared to the same perturbation introduced into the periphery nodes. This 

counterintuitive result shows that the local structure of the perturbed node in the hub 

network controls price spikes through negative feedbacks. The perturbed central node 

begins to see a health rise due to the price spike for its produced resource. The 

periphery nodes see a health decline that mirrors the perturbed node’s increase. 

However, the hub structure causes the center node to be critically dependent on the 

periphery nodes. As the peripheral nodes decrease in health, they decrease production 

and the perturbed central node’s consumption demand is not met by the other sectors 

production supply, due to their low health. This limit on consumption effectively caps 

the perturbation response.  

2.3   Circular Networks 

A circular network is made up of several nodes connected linearly in a circular 

pattern. This network is symmetrical and offers significant buffers to perturbations. 

Shocks must travel linearly through every node, taking more time to reach every node 

in the system. This structure has the longest path length and the minimum connection 

degree of any symmetrical network. The drawback to these features is that the 

magnitude of each perturbation is passed through each node, which can push fragile 

nodes to their death.  

A circular network has a very distinct perturbation response. Figure 4 shows the 

response from removing 100% of node F’s produced resource. Unlike the response 

seen in other network structures, there is no significant health gain in the perturbed 

node following this disruption. Instead, the node that consumes the perturbed node’s 

resource sees a significant health loss. The two closest upstream nodes generally 

experience a health gain, with a phase lagging behind the perturbed node, but node C, 
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sees a health loss. Node C is directly opposite from the perturbed node on this circular 

network: positive and negative responses ripple towards it from opposing directions. 

The negative ripple dominates and the node sees a net health loss.   

 

     

Fig 4. A circular network and a perturbation response for a shock on node F 

3   Combined Networks 

In order to understand the dynamics of complex networks, we combine several simple 

component structures in a new structure which is shown in Figure 5.  

 

Fig 5. A fully connected network combined with a circular network 

 

This structure consists of two distinct parts. Nodes A, B, and C make up a fully 

connected network. Nodes B, D, E and F make up a circular network. Node B is a 

critical node that connects these two structures.  

Perturbing each node will produce a unique system perturbation response since the 

structure is asymmetric. We expect the nodal response for A and C to be similar to 

nodal responses for a fully connected structure, and the nodal responses for B, D, E, 

and F should display circular features. This is an approximation, since the 

combination of structural components adds new feedbacks that cause the system 

dynamics to change. Generally, for this combination, we find that the component 

circular structure retains many qualitative and quantitative features of its dynamics, 

while the fully connected network sees a few distinct changes. In this regard and for 

this combination, we can say that the behavior of the circular structure is more robust 

to structural combination.  
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We can be more precise by observing that the system dynamics change depending 

on what node is perturbed. When nodes far upstream are shocked (node D), the entire 

structure behaves similarly to a circular network. Conversely, when we perturb nodes 

close to supplying the transition node B, the entire system begins to behave with fully 

connected network dynamics.  

 

 

 

Fig 6. Note that perturbations to node D have a response similar to a characteristic circular 

structure, while perturbations introduced at node F display features of a fully connected 

network 

Since the system perturbation response varies as the perturbed node changes, the 

structural components immediately downstream of a perturbation are most critical to 

the system’s response. This makes sense, since health is tied to consumption. 

Perturbations disrupt downstream consumption rates, which controls the perturbation 

response of the system.  

To explore the differences between the component structures more rigorously, we 

can analyze individual node responses. The most interesting node is the transition 

node (B). It is unclear how the component dynamics of the full and circular structures 

will interfere at this point. When we perturb the transition node, the response models 

the circular structure. The shock hits the downstream node (D) the most severely, and 

the perturbed node does not see drastic net gain in health observed in a fully 

connected system. The health gain that ripples through the circular structure with 

some phase lag is clearly seen, and the characteristic fully connected network 

response of a significant health gain is only seen by node D, although it is muted. 
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Fig 7. A combined fully connected network and circular network, where the transition node is 

perturbed  

This combined network provides interesting insight into structure’s affect on 

perturbation responses. We see that downstream structure is a primary factor in 

determining a response. Also, we see circular structures retain their dynamics more 

effectively than a fully connected structure. Most importantly, we see that structural 

features are not additive and complex network structure dynamics cannot easily be 

analytically predicted. 

4   Conclusion 

Studying structure’s affect on system dynamics presents many new challenges. By 

characterizing simple component structures and observing competing dynamics in 

combined structures, we can gain insight into to how these networks interact. The 

results presented here suggest that characterization and combination of sub-structural 

features will be inadequate and yield misleading indicators of the system’s response 

to perturbations. We expect that system dynamics will become more complex as 

network structure becomes more complex. However, some general rules may be 

forthcoming. For example, perturbations to peripheral nodes may produce much 

larger responses than perturbations to central nodes as we found in the simple hub 

structure. It is the search for these general rules towards which we must focus future 

work to understand the dynamics within complex networks made of economic agents. 
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